THE PROPAGATION OF RADIATION IN CAPILLARY-POROUS COLLOIDAL BODIES
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We present a solution for the problem of the distribution of spectral
radiation fluxes through the thickness of a layer and the quantity of
radiant energy absorbed by the elementary layers at a specific depth
in capillary-porous colloidal bodies. We have demonstrated that the
solution is found to be in good agreement with experiment.

The calculation of the external and internal heat and
mass transfer in the drying and heat treatment of cap-
illary-porous colloidal bodies by means of infrared
(IR) radiation is impossible without information on the
spectral radiation flows within the layer, nor without
data on the spectral thermal-radiation characteristics
(transmissivity Ty, reflectivity Ry, absorbtivity Ay,
as well as the emissivity €;). Real bodies exhibit se-
lective optical properties characterized by at least two
spectral coefficients —absorption a3 and scatterings; .

Until now, to account for the quantity of IR radiant
energy absorbed at some depth of the material, we
used either the Bouguer law, or the Bouguer— Lambert
law [2]. However, a fundamental error arises in the
utilization of these laws for the indicated purpose.

Let us examine the process involved in the mono-
chromatic transport of a radiant flow in a plane layer
(of thickness ) of a uniformly selective attenuating me-
dium characterized by the spectral coefficients a) and
S

Diffused monochromatic flows of radiant energy—
respectively equal to Q4 and Q; (Fig. 1)—impinge on
the two sides of the layer. Let us determine the dis-
tribution of the radiation flows within this layer, and
we can then use this quantity to determine the remain-
ing characteristics of the radiation field.

We know of two approaches to the solution of this
problem [3]; these are based exclusively on the two
constants a; and sj. These methods were developed
for stacks of weak-absorption but nonscattering layers
[4], for thin weak-absorption but scattering powder-
like layers [5], and for semitransparent gaseous me-~
dia [6]. According to one of these methods the layer
is assumed to be continuous and a) and s; are the unit-
thickness constants of absorption and scattering for
the layer. According to the other method, the layer is
assumed to consist of elementary layers whose thick-
ness corresponds to the averagedimensions of the crys-
tal particles and a, and s; are the constants of absorp-
tion and reflection for these crystals.

For the solution of the stated problem it is advis-
able to employ the continuous-layer method initially
proposed by Schuster [6] in studying the transfer of
radiation in a plane layer of the atmosphere. This meth-
od was subsequently developed by Gurevich [5], Ku-
belka and Munk [7], Gershun [8], et al. The fundamen-
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talidea behind the Shuster method involves the splitting
of the radiation field within the plane layer into two
discrete flows moving in opposite directions.

Let us isolate the elementary layer dx at a depth x,
with the discrete co-current flows g+ and g- imping-
ing on this layer. In the general case of bilateral ir—
radiation of the layer, if we restrict our considera-
tion only to a single scattering, the co-current flows
will be composed of the following:

gy = QlTx + Qle-xRx’
q- = Q2Tl—x + Q;Tsz-xw (1)

where Ry and Ty are, respectively, the reflectivity
and transmissivity of a layer of thickness x and Rj_x
and Ty, are, respectively, the reflectivity and trans-
missivity of a layer of thickness (I—x).

The scalar magnitude of the summary vector for
the radiant flux density at the depth x is given by

} gr=4q++ 4.
= QlTx + QlTle X ‘l‘ Q2Tl—x + Q?.Tl-xRx' (2)

The quantity of energy absorbed in the elementary
volume of the medium (of thickness dx) per unit time
at a depth x is uniquely defined by the divergence of
q; in the x~-direction.

It follows directly from (2) that the basic error in
the application of the Bouguer and Bouguer-Lambert
laws to the determination of the summary flux density
lies in the fact that no consideration is given to the
co-current radiant flux at the depth x, said flux re-
flected from the remaining thickness (I—x) of thelayer
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Fig. 1. Distribution of radiation
fluxes in plane layer of selective
absorbing and scattering medium,



or from x, and which is equal to Q{TxR;-x + Q2T 7-xRx.
Since most capillary-porous colloidal bodies exhibit
substantial scattering coefficients [9] and, consequently,
since they thus exhibit a high reflectivity (up to 90% in
the near-IR region of the spectrum), the error is quite
substantial (as much as 40%), particularly for the lay-
ers near the surface.

In real absorption and scattering media, a portion
of each radiant flux incident on an elementary layer dx
is absorbed (g, dx) and a portion is diffusely scattered
(s)dx) in the direction opposite to that of the imping-
ing flow (it is reflected). Then the differential equa-
tions characterizing the loss of the discrete interde-
pendent radiant fluxes g, and q. are written [7, 8] in
the following form:

dq.
dx
dq.

— T =g, —(a, + . (4)
dx - g (@ + s g

=—(a + %) + 54 (3)

The boundary conditions are
Gilpmo=Qrand gl,o; = Q. (5)

The solution for the system of equations (3)—(4) for
the boundary conditions (5) has the form
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¥y, = nyexp(—ay!), (8)
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Equations (6) and (7) determine the monochromatic
radiant fluxes impinging at a depth x on alayer of thick~
ness . These equations are simpler in form thanthose
derived by Andrianov [10] for integral flows in a non-
selective gaseous medium.

The quantity g is determined from the equation
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&
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+ G¥, {(-+m)
I—Ti M

x {exp (o, %) — 1, exp(——crxx)]. (10)

The quantity of energy absorbed at the depth x by
an elementary volume of thickness dx per unit time,
with consideration of (3) and (4), is given by

dg _dq. , dq.
dx dx dx

= — ;. (¢+ + ). (1

Using {8), {7}, and {11}, we obtain

4o
dx
a,0 ; [ ‘P‘%
—==e Al + — — M exp {0, %
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Q¥ (14 m)
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X [exp (05, %) — 1, €xp (— 0y x)‘é . (i2)

The expressions with @y and Qg are functions exclu~
sively of the thickness of the layer for the given mate-
rial and wavelength. Consequently, we can write

dg,

—5 =200 (M) + Q6 (- 13)

The functions Cy(x) and Cy{x) are spectral distribu-
tion functions for the radiant energy absorbed through
the thickness, and these can be determined in advance
if we know the optical properties of the material.

To test the derived expressions characterizing the
distribution of the monochromatic radiant fluxes with-
in the capillary-porous colloidal bodies, as well as
to test the hypothesis of linearity for the spectral ab-
sorbtion coefficients ay and the backscattering coeffi-
cients sy, we have to establish the relationship between
the optical properties of these bodies and their ther-—
mal-radiation characteristics Rj and T3, i.e., char-
acteristics which can be measured.

We can determine this relationship from (6) and
(7). From (7), under the condition of unilateral irradi-
ation, we have

Q=0
R, _ =0 _ mll—ewp(=2,4 (19
T

For the limit cases ap = 0 and s, = 0 formula (14)
is in agreement with the familiar expressions for these
cases:

sl

Rilay=o = and Ry, _o =0. (15)

+ 5,1
From {6), given the condition of unilateral irradia-
tion, we have
Q=0
T, = gy | x =1
Q {16)
1 —n

= exp(— 0,/ .
p(—al) I—mniexp(—2a, 0)

For the limit cases (16) is in agreement with the
familiar relationships

and T,

14s,{ 55,=0 == eXp (*—- a;\l). (17)
A

Tila —o=
Max~0

Formulas of the form of (14) and {16} were initially
derived by Stokes [4] for a stack of weak~absorption
nonscattering plates, and later on by Gurevich [5] for
a layer of scattering weak-absorption (gl < 1) par-
ticles in a vacuum,
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With consideration of (8), (9), (14), and (16}, it
follows from (12) and (13) that the functions C;(x) and
Cy(x) at the boundaries of the layer assume the follow-
ing values:

G (x)‘x~0 = (14 R;) = C3 (N)|x- 1,
T Co(Wgw0 = Ty = Cr(®)|xr-

Consequently, the surface layer is heated by two
flows—the incident flow and the one which is reflected.
We can supply the Bouguer-~Lambert law only to
the layer with the coordinate x = ] when we have uni-

lateral irradiation and s; «0.1.
The fraction of energy absorbed by the layer can
be found from the familiar relationship

Ay =1— (R, +T,) =1— 1+ nyexp(—0y,)) ~{18)
T+, exp(— 0y )

For the limit cases we have the familiar relation-
ships

Algy=o =0and 4,], _, =1— exp(—a,)). (19)

On the basis of formulas (14), (16), and (18) we de~
termine the spectral thermal-radiation characteristics
of an optically infinitely dense layer (o3l — =) [7]:

a, -+ s, —o
R},w = TR

Sy
a ai a
__1+_x___l/_ﬁ+2_x= ,
SL 52%. 5, Ma (20)

a2 .
Tos =0and Ag, = _Sg+2ﬂ_%_. (21)
A

Sy, S,

Following directly from (20) is the physical signifi-
cance of the coefficient 7, —a quantity equal to the re~-
flectivity of an infinitely dense layer—as well as the
Gurevich-Kubelka~-Munk formula which finds greatest
application in the spectroscopy of light-scattering me~
dia:

& _ (- Rio) (22)

St 2RAao

We can obtain an equation similar to (22) for o, from
formula (9) by considering (22):

o 1—Rl, % _ 1+ R (23)
Sa, - 2R;,m a, I—Rxm

Having solved (14) and (16} simultaneously for oyl
and keeping in mind (20), (22), and (23), we derive the
following expressions which associate the optical prop-
erties of the medium with the thermal-radiation char-
acteristics of the layer:

Ukl=lﬂ (L__Bﬁlg_?ﬂ‘)’ (24)
A
. 2R
Sh[ == 1-——_—-;#}2’;‘ 0'7“[, (25)
as well as [3]
gl = 1 Rae oy (26)
14 Ryw

724

s —7 a,l
.8 / ! a8 / / °
é/{a /./ f /
/ /2 / 2
2 N el

O/ rj

g /
b .

& Il

o a5 10 15 20 0 @5 10 5 3

Fig. 2. Coefficients syl (a) and ayl (b) of wood (pine)
versus layer thickness [ {(mm) at various wavelengths:
1) A = 0.5 um; 2) 0.6; 3) 0.9; 4) 1.4.

Formulas (24), (25), and (26) permit us to deter-
mine the internal spectral optical characteristics of
the material from the experimentally derived Ry and
T, of a layer of finite thickness I, as well as the Ry,
of a layer that is infinitely dense fromthe optical stand-
point. With consideration of (20), we can write formu-
las (14) and (16) in the following form, more conve-
nient for calculation:

exp (6,)) — exp (— 03, )
R = R 0 N (27>
" g exp (03, ) — Ri exp(— 0, 1)
1—Ris

= . 28
" exp(6y0) — Riw exp(— 0, )) 28

These formulas were tested for several powder-
like materials which were densely packed (luminophores)
[11], for colored glasses, etc. [3,5,8], and the possi-
bility of their utilization was demonstrated. In [3] the
applicability of these formulas was hypothesized for
colloids and other turbid media.

To verify the derived relationships for the propa-
gation of radiation within capillary-porous colloidal
bodies, the authors developed a special adaptor for
the SF-4 spectrophotometer by means of which it was
possible to study the spectral thermal-radiation char-
acteristics of various light-scattering materials. The
adapter to the SF-4 spectrophotometer permits the
simultaneous measurement of Ry and T, in the spec-
tral region from 0.4 to 1.5 yum for the case of normal
incidence of monochromatic radiation onto the surface
of the specimen.

The tests were carried out on such typical colloidal,
capillary-porous colloidal, and capillary-porous mate~
rials as macaroni dough, fruit-candy pastille, raw po-
tato, wood, and flour. As an example, in Fig. 2 we
have presented s,! and ayl for wood (pine) in the air-
dried state as a function of thickness for four wave-
lengths (0.5, 0.6, 0.9, and 1.4 pm), calculated from
(24), (25), and (26) on the basis of experimental data.
In the wavelength range 0.5—0.9 um the scattering co-
efficient is independent of A. Thus, the tests confirm
the constancy of s; found for the luminophore powders
[11] to be valid for the test material. However, this
constancy of s, pertains only to that region of the spec-
trum in which the refractive index of the disperse me-
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Fig. 3. Transmissivity T, of wood (pine)
versus thickness I (mm) and various

wavelengths: 1) A = 0.5 um; 2) 0.6; 3) 0.9;
4) 1.4.
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dium is approximately constant. However, with A cor-
responding to 1.4 um, we find, for example, that s, is
smaller and ay, is larger than when A isequal to 0.9 um,
We know that the absorption band for water lies near
1.42 pm. Consequently, a, and sj are functions of the
refractive and absorption indices for all components
of the medium. Particularly important is the fact that
for the indicated wavelengths, ay! and sy! as functions
of the thickness of the layer are linear in nature. The
values of T) and R; calculated from (27) and (28), and
derived experimentally, are shown as functions of [ in
Figs. 3 and 4, from which it follows that the optical
characteristics of capillary-porous colloidal bodies
can be calculated on the basis of theoretical relation-
ships. The latter are obtained by means of a method
according to which the absorption and scattering of a
layer of unit thickness are treated as the properties
of the material itself, In this connection, the magni-
tude of the absorption coefficient for the unit layer—
calculated from (26)—is in good agreement with the
magnitude of the absorption coeificient for the material,
this quantity having been determined experimentally.

On the basis of the above, we can draw the follow-
ing conclusions.

1. We cannot use the Bouguer and Bouguer-Lam-
bert laws to determine the distribution of radiation
fluxes in absorbing and scattering media, because
they do not provide for consideration of the co-cur-
rent reflected flows.

2. Formulas have been derived for the distribution
of monochromatic radiation fluxes and of the fraction
of radiation energy absorbed by the unit layers through
the thickness, and formulas have been derived to re-
late the optical properties with the thermal-radiation
characteristics of capillary~porous colloidal bodies.

3. The cited relationships can be used for colloidal,
capillary-porous colloidal, capillary-porous, powder-
like, and similar light-scattering materials.

4, The limits of application for the derived rela-
tionships are considerably greater than those estab-
lished earlier. The applicability of relationship (26)
had earlier been restricted by the condition @y = 0.1,
while relationship (20) had been restricted by the con-
dition ay1 « 1.0 [3]. According to our experimental data
and the results from the caleulation of a1 from (26),
the validity of these relationships is retained within
wide limits up to ay? = 1.0 (Fig. 2b).
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Fig. 4. Reflectivity Rj of wood
{pine) versus thickness ! (mm)

and various wavelengths: 1) A =
=0.5um; 2) 0.6; 3) 0.9; 4) 1.4,

NOTATION

Ry, Ty, and A, are the spectral reflectivity, trans-
missivity and absorptivity of the layer, thickness [; €; is
the spectral reflectivity of the real body; a) and s; are
the spectral absorption and back scattering factors of
a layer of unit thickness; Qq o is the monochromatic
radiation; g4+ and g- are the discrete co~current spec~
tral flows at a depth x; qy is the scalar value of the total
density vector of monochromatic radiation at a depth x;
Ry is the spectral refiectivity of an infinitely dense
optical layer.
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